1,sm6136b的接收电路是什么

接收配sm6235

sm6136b的接收电路是什么

2,由集成块KA2206B组成功放电路音量失控原因

看看音量电位器是否磨损,旋转一下,若能在喇叭里听到“咔嚓、咔嚓”声,就需要换这个东东了。

由集成块KA2206B组成功放电路音量失控原因

3,KA2206B电路图

1)固定电压增益 Gv=20 log(R1/R2) (9脚直接接地) Gv=20 log(R1/R2) 2)可变电压增益 (Rf和C1与9脚相连) Gv=20 log(R1/(R2+Rf))

KA2206B电路图

4,集成块型号KA2206B50M4k25X

很常见的功放块,坏了喇叭就不响了。KA2206B是一块由两通道功率放大器组成的单片集成电路。广泛应用于无线电盒式磁带录音机的立体声及电桥放大器中。功能: ● 高输出功率立体声: Po=2.3W (典型) at Vcc=9V, RL=4? 电桥: Po=4.7W (典型) at Vcc=9V, RL=8? ● 高频时低切换失真 ● 内置静噪电路,开关时噪声小 ● 内置波纹滤波器,波纹抑制好 ● 通道分离度高● 输出饱和时音调柔和 ● 通过增加外部电阻,可使闭合环路电压增益固定为45dB (电桥: 51dB) ● 所需外部元件少● 易于天线散热片设计 *散热片安装在 PCB板上。
同问。。。

5,KA2206B组成功放电路图

电源电压 直流8-24V/1-2A 功率输出 >10W 4Ω负载,24VDC 电源 >6W 4Ω负载,24VDC 电源 >4W 4Ω负载,12VDC 电源 S/N >75dB 10W输出时 频率响应 10Hz—50kHz -3dB 增益 36dB 输入电平 100mV满功率输出 原理及制作要点: C1、C2为输入电容,C10、C11为输出电容,C6、C7为反馈电容,C4、C5为电源滤波电容。R1/R2或(R3/R4)控制反馈量,放大器的增益等于1+(R1/R2)=68或37dB。该装置电源电压最大为DC28V。工作时TDA2009A需加散热片,并应注意电源线和接扬声器接线的选择。输入端应选用屏蔽线并尽可能的短。焊接TDA2009A时注意时间要短,动作要快,但要让其充分与电路板融合,保证接触良好、可靠。
2206音质听着不舒服啊!

6,功放电路布线有那些要注意的

1.首先确定前面功放机摆放的位置,以确定线头预留的位置;2.然后在墙壁上和地上走PVC管,把线穿到里面,线大概200-300芯即可;3.确定后边环绕音响摆放的大概位置和音响个数(5.1 6.1 等等)。如果想要美观的话,买几个接线板直接固定在墙壁上。最后线材留点富余。
一、概述 hxj8002 是一个单通道3w、btl 桥连接的音频功率放大器.它能够在5v工作电压,3ω负载,提供thd<10%、平均值为3w 输出功率。 hxj8002 是为提供大功率,高保真音频输出而专门设计的. 极少的外部元件从而简化了线路设计、节省了电路板空间、降低了生产成本,并且能工作在低电压条件下(2.0v-5.5v) 。hxj8002 不需要耦合电容,自举电容或者缓冲网络,所以它非常适用于小音量和低重量的低功耗系统中. 二、 要特性 1、 在thd+d<10% ,输入1khz频率时,不同负载的条件下输出功率为(典型值): 3 w (负载3ω) ; 2.5w (负载4ω);1.5w (负载8ω) 2、 待机电流: 0.6ua (典型值) 3、 工作电压:2.0-5.5v。 4、 在输入信号为1khz频率, 8ω负载,输出平均功率为1w 的条件下,最大失真度为0.5% 5、 输出不需要耦合电容,自举电容或者缓冲电路。 6、 采用sop8无铅封装。 7、 增益稳定,外部增益可调

7,boost电路

摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向。根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法。一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9% 关键词:升压电路;软开关;同步整流 引言 轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。 Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。 Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。 本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。 1 工作原理 图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,但是S1只能工作在硬开关状态。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。 接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。 在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示。其工作原理描述如下。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降。直到S2的漏源电压下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性?小,直到变为负值,然后S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电。S1的漏源电压可以近似认为线性下降。直到S1的漏源电压下降到零,该阶段结束。 6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件。 接着S1在零电压条件下导通,进入下一个周期。可以看到,在这种方案下,两个开关S1和S2都可以实现软开关。 2 软开关的参数设计 以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同。电感电流的峰峰值可以表示为 ΔI=(VinDT)/L (1) 式中:D为占空比; T为开关周期。 所以,电感上电流的最大值和最小值可以表示为 Imax=ΔI/2+Io (2) Imin=ΔI/2-Io (3) 式中:Io为输出电流。 将式(1)代入式(2)和式(3)可得 Imax=(VinDT)/2L+Io (4) Imin=(VinDT)/2L-Io (5) 从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的。另外,通常满载情况下|Imax| |Imin|。所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多。这里将S1称为弱管,S2称为强管。 强管S2的软开关极限条件为L和S1的结电容C1和S2的结电容C2谐振,能让C2上电压谐振到零的条件,可表示为式(6)。 将式(4)代入式(6)可得 实际上,式(7)非常容易满足,而死区时间也不可能非常大,因此,可以近似认为在死区时间内电感L上的电流保持不变,即为一个恒流源在对S2的结电容充电,使S1的结电容放电。在这种情况下的ZVS条件称为宽裕条件,表达式为式(8)。 (C2+C1)Vo≤(VinDT/2L+Io)tdead2 (8) 式中:tdead2为S2开通前的死区时间。 同理,弱管S1的软开关宽裕条件为 (C1+C2)Vo≤(VinDT/2L-Io)tdead1 (9) 式中:tdead1为S1开通前的死区时间。 在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件。首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L。因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大。 3 实验结果 一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性。 该变换器的规格和主要参数如下: 输入电压Vin24V 输出电压Vo40V 输出电流Io0~2.5A 工作频率f200kHz 主开关S1及S2IRFZ44 电感L4.5μH 图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形。从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件。从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS。但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异。 图7给出了该变换器在不同负载电流下的转换效率。最高效率达到了97.1%,满载效率为96.9%。 4 结语 本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向。在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管。设计中要根据弱管的临界软开关条件来决定电感L的大小。因为实现了软开关,开关频率可以设计得比较高。电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯)。因此,这种方案适用于高功率密度、较低输出电压的场合。麻烦采纳,谢谢!

文章TAG:ka2206b是什么电路是什么  什么  电路  
下一篇