本文目录一览

1,解答xy2z32乘以x2y3

(-xy2z3)2*(-x2y)3 =x2y^4z^6*(-x^6y3) =-x^(2+6)*y^(4+3)*z^6 =-x^8y^7z^6

解答xy2z32乘以x2y3

2,已知x2y2x2y2690求x2y2的值

设x2+y2=t 那么原式=t2-6t+9=0 (t-3)2=0 可得t=3
将x^2+y^2看成一个整体为z,则原式等于z*(z-6)=9解z^2-6z=9 得到z1=3+6*根号2z2=3-6*根号2

已知x2y2x2y2690求x2y2的值

3,高数求由曲面zx2 2y2和z62x2y2所围成立体的体积

^两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2 体积V=∫∫(D) [(6-2x^2-y^2)-(x^2+2y^2)]dxdy 用极坐标 =3∫(0~2π)dθ∫(0~√2) (2-ρ^2)ρdρ=6π

高数求由曲面zx2 2y2和z62x2y2所围成立体的体积

4,z2x22y2及z62x2y2所围成的立体的体积

题目若是求:z=x^2+2y^2 及 z=6-2x^2-y^2 所围成的立体的体积,则为D: x^2+y^2=2V=∫∫<D>[(6-2x^2-y^2)-(x^2+2y^2)]dxdy=3∫∫<D>(2-x^2-y^2)dxdy=3∫<0,2π>dθ∫<0,√2)(2-r^2)rdr=6π[r^2-r^4/4]<0,√2>=6π.

5,因式分解x3y6y6

x^3(y^6-z^6)+y^3(z^6-x^6)+z^3(x^6-y^6)=x^3y^6-x^3z^6+y^3z^6-y^3x^6+z^3(x^6-y^6)=-x^3y^3(x^3-y^3)-z^6(x^3-y^3)+z^3(x^3-y^3)(x^3+y^3)=(x^3-y^3)(-x^3y^3-z^6+z^3x^3+z^3y^3)=(x^3-y^3)[y^3(z^3-x^3)-z^3(z^3-x^3)]=(x^3-y^3)(y^3-z^3)(z^3-x^3)=(x-y)(y-z)(z-x)(x^2+xy+y^2)(y^2+yz+z^2)(z^2+zx+x^2)
(x+y+z)^3-x^3-y^3-z^3 =3*x^2*y+3*x^2*z+3*x*y^2+6*x*y*z+3*x*z^2+3*y^2*z+3*y*z^2 =3*(x+y)*(x+z)*(y+z)

文章TAG:lowa怎么  怎么样  解答  
下一篇