本文目录一览

1,怎么样调整柴油车高压油泵让车跑得快

有调整螺栓的可以用来调整,不过建议你不要自行调整,还是找个专业人士进行。
应该这么说,高压油泵只是起指供原料〔雾化〕作用,还要用高温压缩气体才能点火燃烧

怎么样调整柴油车高压油泵让车跑得快

2,汽车高压火是怎么产生的

高压包产生的,高压包内有两组线圈,初级线圈和次级线圈通过控制初级线圈的不断通断便会在次级线圈产生高压电,公式为次级线圈高压电除线圈圈数等于初级线圈的低压电除线圈圈数
靠高压包产生的

汽车高压火是怎么产生的

3,汽车如何熄火

那首先要知道怎么起火的,打火根据蓄电池的电压,通过**产生高压,在火花塞两端产生高压,高压在火花塞2端时会把空气击穿,因为火花塞2端距离短所以产生火花,这时汽油经过化油器雾化,遇到火花点燃,产生气压,通过气压带动躯干连动发动机.可以分析可以断电就可以停止.
把钥匙拿出来
放空档 钥匙一扭不久熄火了嘛
挂档,迅速抬离合器绝对熄火
如果遇到不知道有多深的,请尽量不要尝试。遇到水没过排气管,挂1挡底速行驶,千万不能熄火,一但熄火,排气管不排气就会进水,这样只能托出来了。有些年限长的面包车既使不没过排气管也会因为分电器内有水珠使以后
应该是钥匙控制切断电源了

汽车如何熄火

4,汽车是怎么控制闪光器的请看详细类容

常见闪光器有电容式、翼片式、晶体管式三类(图6-22)。翼片式和带继电器的晶体管式闪光器结构简单体积小、闪光频率稳定、监控作用明显、工作时伴有响声,故被广泛使用。 1.电容式闪光器 电容式闪光器结构如图6-23所示,它由一只大容量电解电容器和双线圈继电器组成。工作原理:接通转向灯开关(左或右)后,串联线圈经触点、转向信号灯构成回路,且电流较大。产生较强磁场,吸动衔铁,使触点张开。此过程中,串联线圈通电时间极短,转向信号灯不亮。触点张开后电容器经串联线圈、并联线圈、转向灯开关、转向灯及转向指示灯构成充电回路.由于充电电流很小,此时转向灯与转向指示灯不亮。触点在串并联线圈的合成磁场(方向相同)作用下,仍保持张开状态。电容器充足电后.并联线圈电流消失,铁心吸力减小,触点在复位弹簧作用下闭合,转向灯与转向指示灯亮;同时,电容器经并联线圈及触点放电,由于串联线圈与并联线圈磁场方向相反,铁心吸力极小,触点保持闭合状态。当电容器放电结束后,并联线圈电流消失,在串联线圈磁场作用下,触点再次张开,转向灯与转向指示灯变暗,电容器再次充电。如此周而复始,转向灯与转向指示灯不停地以此频率闪烁。 电容式闪光器具有监控功能,当一侧转向灯有一只或一只以上转向灯泡烧断或接触不良时,闪光器就使该侧转向灯接通时只亮不闪,以示该侧转向灯电路异常。 2.翼片式闪光器 翼片式闪光器分为直热翼片式和旁热翼片式两种。 (1)直热翼片式闪光器 直热翼片式闪光器主要由翼片、热胀条、触点等组成(图6-24)。工作时,弹性翼片在热胀条(热膨胀系数较大的金属板条)的拉力下呈弓形,触点处于闭合状态。接通转向何开关(左或右)后.转向灯与转向指示灯电路接通,灯亮。电路如下:蓄电池正极——翼片——热胀条——触点——转向灯开关——转向灯及转向指示灯——搭铁——蓄电池负极。由于电流流经热胀条,热胀条伸长。翼片在自身弹力作用下伸直,活动触点随热胀条向上移动与固定触点分离。电路被切断,转向何与转向指示灯熄灭。热胀条中电流消失后,冷却收缩,牵动翼片再次呈弓形,活动触点下移与固定触点再次闭合,电路接通,转向灯与转向指示灯又亮。如此反复变化,产生了闪烁的转向信号,同时发出“啪嗒”“啪嗒”响声。 (2)旁热翼片式闪光器 旁热翼片式闪光器与直热翼片式闪光器主要不同点在于热胀条上绕有电热丝(图6-25)。电热丝下端与热胀条相接,上端与静触点相连,匝间与热胀条绝缘。工作时,翼片受热胀条拉力作用呈弓形,触点张开。转向灯开关闭合后,电热丝通电加热热胀条,使其膨胀伸长,冀片在自身弹力作用了伸直,使触点闭合。触点闭合后,转向灯与转向指示灯亮。电热丝被触点短路,热胀条冷却收缩,翼片被拉呈弓形.触点再次张开,转向何与转向指示灯变暗。电热丝再次通电。如此周期性动作,转向何产生闪烁灯光信号。当电阻丝通电时.电流虽经转向信号灯构成回路,因为电流很小,转向灯不会亮。 3.晶体管式闪光器 晶体管式闪光器有带继电器晶体管式闪光器(有触点)、无触点闪光器、集成电路闪光器等。 (1)带继电器的晶体管闪光器 带继电器的晶体管闪光器的工作原理如图5-26所示,它主要由三极管开关电路和小型继电器组成。 当汽车打开右转向信号灯时,电流由蓄电池正极——电源开关SW——接线柱B——电阻R1——继电器的常闭触点J——接线柱s——转向灯开关K——右转向信号灯——搭铁——蓄电池负极,形成回路,右转向信号灯亮。当电流通过电阻R1时,在电阻R1上产生电压降,三极管VT因正向偏压而导通,集电极电流通过继电器线圈J,使继电器的常闭触点立即打开,右转向信号灯随之熄灭。 三极管导通的同时,其基极电流向电容器C充电。电流由蓄电池正极——电源开关sw——接线柱B——三极管的发射极e——基极b——电容器C——电阻R3——接线柱S——转向灯开关K——右转向灯——搭铁——蓄电他负极,形成回路。随着电容器电荷的积累,充电电流逐渐减小,三极管的集电极电流也随之减小,当电流减小,线圈中产生的电磁力不足以维持衔铁的吸合而释放时,继电器触点重又闭合,转向灯又再次发亮。这时电容器C通过电阻R2、继电器触点J、电阻R3放电。放电电流在R2上产生的电压降为三极管提供反向偏压,加速三极管的截止。当放电电流接近零时,R1上的电压降为三极管VT提供正向偏压使其导通。这样,电容器不断地充电和放电,三极管也就不断地导通与截止,控制继电器触点反复地打开、闭合,使转向信号灯闪烁。 国产SG131型无触点闪光器的电路如图6-27所示。当转向灯开关打开时,三极管VT1的基极电流由两路提供,一路经电阻R2,另一路经电阻R1和电容器C,三极管VT1导通,复合三极管VT2、vT3处于截止状态,由于VT1的导通电流很小,仅60mA左右,故转向灯不亮。与此同时,电源对电容器C充电,随着电容器C两端电压的升高,充电电流逐渐减小,三极管 VT1由导通变为截止。这时A点的电位升高,当其电位达到l.4V时.三极管VT2导通,三极管vT3也随之导通.于是转向灯发亮。此时,电容器 C经过电阻R1、R2放电,电容器放完电后,接着电源又对电容器C充电,三极管VT1导通,VT2、VT截止,转向灯熄灭,如此反复,使转向灯闪烁。闪光频率由电路中元件的参数决定。 (3)集成电路闪光器 图6-28所示为上海桑塔纳汽车装用的集成电路闪光器的工作原理图。U243B型集成块是一块低功率、高精度的汽车电子闪光器专用集成电路。U243B的标称电压力12V,实际工作电压范围为9-18V,采用双列8脚直插塑料封装。内部电路主要由输入检测器SR、电压检测器D、振荡器Z及功率输出级SC四部分组成。 输入检测器用来检测转向信号灯开关是否接通。振荡器由一个电压比较器和外接的电阻R4和电容器C1构成。内部电路比较器的一端提供了一个参考电压,其值由电压检测器控制,比较器的另一端则由外接的电阻R4和电容器C1提供一个变化的电压,从而形成电路的振荡。振荡器工作时,输出级的矩形波便控制继电器线圈的电路并使继电器触点反复打开和闭合。于是转向信号灯和转向指示灯闪烁,频率为80次/min。 果一只转向灯烧坏,则流过取样电阻RS的电流减小,其电压降减小,经电压检测器识别后,便控制振荡器电压比较器的参考电压,从而改变振荡频率,使转向指示灯的闪光频率加快一倍,以提示驾驶员及时检修。当打开危险警报开关时,汽车的前、后、左、右转向信号灯同时闪烁作为危险警报信号。
闪光器有3个端子 l e b 分别是输出 地线 长火线 上面的哥们说的很清楚了 分类 现在用的最多的是集成块控制继电器的 l输出端要通过开关 灯泡 到地这样来闪亮的 我只有555集成块的电子闪光器的图给你参考

5,汽车ecu如何控制启动喷油量 详细

ECU 的电压工作范围一般在 6.5~16V(内部关键处有稳压装置)、工作电流在 0.015~0.1A、工作温度在–40 ~ 80 度。能承受1000Hz 以下的振动,因此ECU 损坏的概率非常小,据说在千分之一点二以下。 在ECU 中的CPU 是核心部分,它具有运算与控制的功能,发动机在运行时,它采集各传感器的信号,进行运算,并将运算的结果转变为控制信号,控制被控对象的工作。 存储器ROM中存放程序代码,是以精确计算和大量实验数据为基础设计的,所以对各生产厂来说是绝密的。这个固有程序在发动机工作时,不断地与采集来的各传感器的信号进行比较和计算,进行发动机的点火、空燃比、怠速、废气再循环等控制;它还有故障自诊断和保护功能。当系统产生故障时,它还能在RAM中自动记录故障代码并采用保护措施从上述的固有程序中读取替代程序来维持发动机的运转,使汽车能开到修理厂(跛行模式)。 正常情况下,RAM 会不停地记录你行驶中的数据,目的是为适应你的驾驶习惯提供最佳的控制状态,这个程序也叫自适应程序。但由于是存储于RAM中,就象错误码一样,一但去掉电瓶而失去供电,所有的数据就会丢失。 二、ECU 是怎样控制发动机运转 1、启动前 A.任何电喷车启动前都要合上点火开关,只要一打开点火开关,就会有一个高电平信号通向ECU 的一个专用输入脚(起始信号)。接到起始信号后ECU 就会立即对所有的传感器进行检测。检测的过程就是把各传感器输入脚电压与程序中的电压进行比较。如果数据相符,ECU 故障信号输出脚的电平就会翻转,面板上黄色的故障信号灯熄灭。 例如,奇瑞各类车的传感器有七到九个不等,但无论多少都是“或非”的逻辑关系,只要有一个传感器不正常,“或非”的逻辑关系不成立,故障信号灯就不熄灭。反之,一但故障信号灯熄灭后,再中途出现故障逻辑关系又被破坏。输出脚的电平就会再次翻转、面板上的故障信号灯再次点亮。常说的手闸灯、ABS 灯有时在行驶中闪亮,就是这个原因。至于这两个灯为什么容易出错,那是另话了。 B.接到起始信号后,ECU 会在专用输出脚立即输出一个高电平对油泵定时供电,让油泵在20S 内连续泵油。 C.接到起始信号后,如果节气门位置传感器上的电压接近 5V(不踩油门踏板时), ECU 就判定为是启动(所以电喷车启动时不宜踩油门踏板)。于是,ECU 上的四个专用输出脚会发出编码的数字信号,驱动怠速电机连续200 拍联动,使旁通阀上的胶柱后退8mm , 旁通道全开(怠速电机是四相三拍的步进电机,必需要A、B、C、D 四相脉冲驱动) 。 D.修整点火提前角。我们知道点火提前角是根据发动机的压缩比和进气量计算而得的,这就是固有程序中的数据,而每次启动的温度、大气压力都不同;这时候,水温传感器、绝对压力传感器传来的信号使ECU 中的CPU 通过计算修正,得出应该提供给喷油嘴多大的喷油脉宽和开度(脉宽是打开喷油的时间,喷油嘴的开度是电压信号,一般在1~4V 左右, 电压越高、开度越大)。它也是由ECU 上的四个专用输出脚直接与四个喷油嘴上的线圈通过导线相连。 2、点火与启动 说到点火与启动就要说到喷油和点火提前角了.。 我们知道喷油量是 ECU 上四个输出脚直接联接各喷油嘴线圈的一端, 喷油嘴线圈的另一端是接火线(+12V),那么 ECU 输出脚只要输出为零,(不是零电位) 喷油嘴便会打开喷油。看起来很简单,但是,什么时候打开、打开多长时间是最佳。而且冷车时是怎么打、热车时是怎么打、重负荷时是怎么打、轻负荷时是怎么打 --------而且要细化到多少度时怎么打、多少负荷时是怎么打就很复杂了。 汽车生产厂在设计时根据经过精确计算和大量实验取的数据为基础,把各缸吸进气的顺序和进气门打开的时间采用相位控制的办法编制了一个图表,这就是常说的喷油脉谱图(也是绝密文件)存放于源程序中,再根据发动机随机的转速和进气歧管的压力变化随时刷新于RAM 中,不断地与源程序比较而修正发动机在所有条件下的工况。 同样,发动机在各种工况下的点火提前角也是预先编制了一个“提前角特性谱”存放于源程序中,再根据实时的转速和负荷的信息、加上水温、吸气温度等信息与提前角特性谱比较,修正点火提前角使发动机得到一个最佳点火时刻。 由此可见,信号占用的空间是很大的了,处理时间也有苛刻的要求。然而现在ECU 中的CPU 已升级到16 位,12MHz 的时钟频率发生器,40KB字节的 ROM / EPROM、2KB字节的RAM。 这对专搞IT 的军友来说,可能是小菜一碟,可是对车用微机来说已是足够了。顺便说一下,凡是在采样信号取决于喷油脉宽(混合气浓度)、节气门位置(空气密度)、发动机转速、顺序点火的又叫《λ 速度密度》类喷油系统。 说完了“油”和“火”后,就可以“烧”了。 按下启动开关,接通启动电机。发动机曲轴带动旋转飞轮。 此时,ECU 按节气门位置传感器的信号(不踩油门踏板时为 5V)、冷却液传感器和进气温度/绝对压力传感器(低于 65 度)、判别为冷车启动。于是通知四个喷油器同时喷油,同时喷油的目的是加速进气歧管的混合气浓度,减少起动时间。 旋转的飞轮边缘有齿,而且故意是少了两个齿的齿轮,具体地说奇瑞的飞轮是60 齿轮、减少两齿为 58 齿,但圆周角乃为每齿 6 度。。在它的边缘处有个对应的传感器,它就叫转速/ 上止点传感器。简称为转速传感器。 奇瑞的转速传感器是个由带永久磁铁的圆筒和线圈组成,所以归类于电磁式传感器,也叫霍尔传感器。它的原理就是当缺齿部分靠近传感器时改变了原来的磁场,使霍尔传感器输出了一个交变的电压信号。ECU 就是根据这个信号来计数和时间。飞轮每旋转一圈,ECU 都能读到信号,因此,ECU 是无时不刻地监督着飞轮的旋转。同时飞轮的转速就是曲轴的转速、曲轴的转速就是发动机的转速。所以这个传感器成了转速传感器。 当缺齿部分靠近传感器输出电平的时间也为ECU 掌握,ECU 可以知道第一个脉冲电平到来的时间,经过计算得出点火时间通知及时点火,这第一个脉冲电平的到来时刻而又是在装配时人为地通过在正时皮带上的调节,使1、4 缸的活塞恰恰在在某处为上止点。所以这个传感器又成了上止点传感器。1、4 缸的上止点调节在缺齿信号开始后的20 齿的位置、则2、3 缸的位置必然在50 齿的位置(相差30 齿、正好相差180 度)。 ECU 又是无时不刻地监督着点火时间,所以可以及时地调整每次点火时间和点火能量。 说到点火能量,我们又要谈到“一次电流”了,所谓“一次电流”就是一次回路中的电流,我们知道;点火时的高压并不是ECU 直接发出的,而是通过一个类似自藕变压器升压的, 那么通过初级绕组的电流我们叫作“一次电流”。ECU 能够自动调节“一次电路”导通时间,使需要高能量时延长导通时间(冷车启动和高速),,增大一次电流,提高二次电压;低速时则适当减少导通时间,限制一次电流的幅度,以防点火线圈发热。 冷车启动就是靠上述的传感器给ECU 的信号,ECU 又是根据这些信号调节了四个喷油嘴通时喷油、调整了第一拍点火时间、延长了一次电流的导通时间、使之发动机点火在短时间内成功。 二. 怠速 怠速分为暖机怠速和热机怠速。 冷机启动后即为暖机,暖机怠速的默认值为65 度,热机怠速的默认值为85 度。 需要说明的是提供温度值的冷却液的温度传感器和进气温度传感器实际上都是一种NTC 负温度系数的电阻,它在温度上升时呈阻值下降而引起电压变化。因此它们的变化是无级的,而且在ECU 的数据库内是一、一对应的,故而ECU 随之的修整量变化也是无级的,并没有 ECU 特定的默认值。 冷启动时发动机温度很低,要求供给的很浓的混合气已在上面说了。 冷起动之后的短时间内温度也不可能高,仍有一部分燃料会冷凝在较冷的缸壁上,从喷油脉谱图读到的喷油时间还是远远不够,此时ECU 根据进气温度传感器(冷却液的温度上升较慢)信号予以矫正。这时氧传感器正在加热过程中,它要在300 度以上才能正常工作,而此时的废气也往往不足以使氧传感器加热到300 度以上,因此,此时可以认为是开环控制。 这时候的点火也与上面已经说的那样,由 ECU 调整。所要补充的是奇瑞的点火分为 1、4 和2、3 两组,早期的奇瑞车由ECU 模块内的两个开关三极管轮流截止和导通驱动双继电器为点火线圈的低压线圈作开关作用,后来的奇瑞车则改双继电器为内置电源模块为替代。内置电源模块集电子控制点火系统、点火系统和喷油系统为一体,可以供各种最佳点火角度值。在首次点火成功后ECU 会根据最佳点火角度值、喷油时间和进气量来分析大气压力,再次修正来适应不同海拔地区发动机的工况。 随着外界起始温度的不同,暖机怠速的目标转速也不同,可以是1000、也可以是1100。此时ECU 仅以温度为判别值。给油量也是从喷油脉谱图读入有付加值的喷油量,并不是无限大。但随着发动机温度的逐渐上升,在大约65~70 度左右“有付加值的喷油量”停止供给。暖机怠速开始向,热机最终目标值(FY 为 880 转)逼近,氧传感器也开始趋向输出稳定的脉冲信号(幅值在0。1~0。9V)予以反馈,当混合气过浓时;电压偏高,反之则低。ECU 就是利用这个信号控制怠速执行器(步进电机及其减速丝杆涡轮)来执行滑块的位置,用以控制旁通道的空气流量。空气流量梢大,混合气就稀、氧传感器输出电压就低、ECU 就调节喷油脉宽增加,转速就提高。(反之也一样)同时ECU 又不断地根据转速传感器的信号,判断是否到达目标转速,就是这样ECU 用逼近法稳定怠速。 说到怠速执行器必然要想到节气门,现在大家都知道了,我们的油门踏板不是直接控制油量而是控制空气进量,但节气门转动的轴上又连动着一个类似电位器的滑臂,是这个滑臂在“电位器”上取得分压告诉ECU,ECU 又是根据这不同的电压在喷油脉谱图读取不同的数据控制油量。这个“电位器”我们叫节气门位置传感器。 (氧传感器在排气管后总是把这两个量(空气量、油量)的燃烧结果用电压量反馈到ECU,氧传感器本身并不控制转速。) 节气门位置传感器不是普通的“电位器”,我记得以前曾经和某个军友讨论过节气门位置传感器有几个接线的问题。那个军友说是三根,我说是五根。去看实车从表面上来说,他是对的,其实他是错的。为什么说他错呐?因为他不知道节气门位置传感器的结构和原理,难怪从外表来看确实象个电位器——只有三根线。 我们把这三根线暂叫 1、2、3。中间的叫“2”是滑动臂;“1”为上面的终极端;“3”为起 始端,怠速时节气门全闭在“3”上。 然而节气门位置传感器在“1”和“3”上又分别装有了一对触点,在“1”上的叫怠速触点;在“3”上的叫全负荷触点。两个触点增加了两条线,所以是五根。 不过全负荷触点的一端是借助于一个电阻与怠速触点相联,在内部已经连接了,而两个触点的另一端则是全靠滑动臂“2”来顶合。所以不需要外界再增加两条线的缘故。 我故意和他缠是五根线,目的也和现在一样,是要重视这两个触点的作用。 这两个触点向ECU 提供了直流定压信号,全负荷信号在下面的“加速”中讲,怠速信号则已经在上面已经引用了,上述的所有动作都是ECU在有怠速信号的前提之下, 发动机工作期间,各传感器分别将每一瞬间的发动机转速、负荷、冷却水的温度、节气门的位置以及是否发生爆燃等与发动机工况有关的信号,经接口电路输入 CPU,CPU 再根据转速、负荷信号调出两个谱图进行比较、计算。计算出该工况对应的最佳点火提前角和一次电路导通时间的有关数据,并根据冷却水的温度再加以修正。最后根据计算结果和点火信号,在最佳的时刻向点火控制电路和点火线圈发出控制信号,接通点火线圈的一次电路,经过最佳一次电路导通时间后,再发出控制信号切断点火线圈的一次电路,使一次电流迅速下降到零,在点火线圈的二次绕组中产生高压电,点燃混合气,可见整个过程是两个节拍。 羀芆芀蚂螃膂艿蛳羁 肈芈蒄螁羄莇薆羇袀莇虿 螀膈莆莈罗膄莅薁螈肀莄 蚃肃罴莃螅袆芅莂蒅虿膁 莁薇袄肇蒁虿蚇羃蒀荿袃 衿葿蒁蚆芇蒈蚄袁腽蒇螆 蛳聿蒆蒆罿罗蒅 荟螂芄蒅蚀羁膀薄螃螀肆 薃蒂罴羂腿薅蝿袈膈螇羄 芆膈蒇袇膂膇蕿肂肈嗉蚁 袅羄膅蛳蚈芃芄蒃袄腿芃 薅蚆肃芃蚈袂羁节蒇蚅羇 芁薀羀芆芀蚂螃膂艿蛳羁 肈芈蒄螁羄莇薆羇袀莇虿 螀膈莆莈罗膄莅薁螈肀莄 蚃肃罴莃螅袆芅莂蒅虿膁 莁薇袄肇蒁虿蚇羃蒀荿袃 衿葿蒁蚆芇蒈蚄袁腽蒇螆 蛳聿蒆蒆罿罗蒅荟螂芄蒅 蚀羁膀薄螃螀肆薃蒂罴羂 腿薅蝿袈膈螇羄芆膈蒇袇 膂膇蕿肂肈嗉蚁袅羄膅蛳 蚈芃芄蒃袄腿芃薅蚆肃芃 蚈袂羁节蒇蚅羇芁薀羀芆 芀蚂螃膂艿蛳羁肈芈蒄 螁羄莇薆羇袀莇虿螀膈莆 莈罗膄莅薁螈肀莄蚃肃罴 莃螅袆芅莂蒅虿膁莁薇袄 肇蒁虿蚇羃蒀荿袃衿葿蒁 蚆芇蒈蚄袁腽蒇螆蛳聿蒆 蒆罿罗蒅荟螂芄蒅蚀羁膀 薄螃螀肆薃蒂罴羂腿薅蝿 袈膈螇羄芆膈蒇袇膂膇蕿 肂肈嗉蚁袅羄膅蛳蚈芃芄 蒃袄腿芃薅蚆肃芃蚈袂羁 节蒇蚅羇芁薀羀芆芀蚂螃 膂艿蛳羁肈芈蒄螁羄莇薆 羇袀莇虿螀膈莆莈罗膄莅 薁螈肀莄蚃肃罴莃

文章TAG:面包车高压怎么控制  怎么样调整柴油车高压油泵让车跑得快  
下一篇